Morita contexts and equivalences
نویسندگان
چکیده
منابع مشابه
Morita Contexts for Corings and Equivalences
In this note we study Morita contexts and Galois extensions for corings. For a coring C over a (not necessarily commutative) ground ring A we give equivalent conditions for M to satisfy the weak. resp. the strong structure theorem. We also characterize the so called cleft C-Galois extensions over commutative rings. Our approach is similar to that of Y. Doi and A. Masuoka in their work on (cleft...
متن کاملMorita Equivalences of Cyclotomic
We prove a Morita reduction theorem for the cyclotomic Hecke algebras Hr,p,n(q,Q) of type G(r, p, n). As a consequence, we show that computing the decomposition numbers of Hr,p,n(Q) reduces to computing the psplittable decomposition numbers (see Definition 1.1) of the cyclotomic Hecke algebras Hr′,p′,n′ (Q ), where 1 ≤ r ≤ r, 1 ≤ n ≤ n, p | p and where the parameters Q are contained in a single...
متن کاملA pr 2 00 5 Morita Contexts for Corings and Equivalences ∗
In this note we study Morita contexts and Galois extensions for corings. For a coring C over a (not necessarily commutative) ground ring A we give equivalent conditions for M to satisfy the weak. resp. the strong structure theorem. We also characterize the so called cleft C-Galois extensions over commutative rings. Our approach is similar to that of Y. Doi and A. Masuoka in their work on (cleft...
متن کاملMorita-equivalences for Mv-algebras
We shall make a survey of the most recent results obtained in connection with the programme of investigating notable categorical equivalences for MV-algebras from a topos-theoretic perspective commenced in [3]. In [3] and [2] we generalize to a topos-theoretic setting two classical equivalences arising in the context of MV-algebras: Mundici’s equivalence [4] between the category of MV-algebras ...
متن کاملMorita Type Equivalences and Reflexive Algebras
Two unital dual operator algebras A,B are called ∆-equivalent if there exists an equivalence functor F : AM → BM which “extends” to a ∗−functor implementing an equivalence between the categories ADM and BDM. Here AM denotes the category of normal representations of A and ADM denotes the category with the same objects as AM and ∆(A)-module maps as morphisms (∆(A) = A ∩A ). We prove that any such...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1979
ISSN: 0021-8693
DOI: 10.1016/0021-8693(79)90286-2